Specification of epibranchial placodes in zebrafish.

نویسندگان

  • Alexei Nechiporuk
  • Tor Linbo
  • Kenneth D Poss
  • David W Raible
چکیده

In all vertebrates, the neurogenic placodes are transient ectodermal thickenings that give rise to sensory neurons of the cranial ganglia. Epibranchial (EB) placodes generate neurons of the distal facial, glossopharyngeal and vagal ganglia, which convey sensation from the viscera, including pharyngeal endoderm structures, to the CNS. Recent studies have implicated signals from pharyngeal endoderm in the initiation of neurogenesis from EB placodes; however, the signals underlying the formation of placodes are unknown. Here, we show that zebrafish embryos mutant for fgf3 and fgf8 do not express early EB placode markers, including foxi1 and pax2a. Mosaic analysis demonstrates that placodal cells must directly receive Fgf signals during a specific crucial period of development. Transplantation experiments and mutant analysis reveal that cephalic mesoderm is the source of Fgf signals. Finally, both Fgf3 and Fgf8 are sufficient to induce foxi1-positive placodal precursors in wild-type as well as Fgf3-plus Fgf8-depleted embryos. We propose a model in which mesoderm-derived Fgf3 and Fgf8 signals establish both the EB placodes and the development of the pharyngeal endoderm, the subsequent interaction of which promotes neurogenesis. The coordinated interplay between craniofacial tissues would thus assure proper spatial and temporal interactions in the shaping of the vertebrate head.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endoderm-derived Fgf3 is necessary and sufficient for inducing neurogenesis in the epibranchial placodes in zebrafish.

In vertebrates, epibranchial placodes are transient ectodermal thickenings that contribute sensory neurons to the epibranchial ganglia. These ganglia innervate internal organs and transmit information on heart rate, blood pressure and visceral distension from the periphery to the central nervous system. Despite their importance, the molecular mechanisms that govern the induction and neurogenesi...

متن کامل

Integrin-α5 Coordinates Assembly of Posterior Cranial Placodes in Zebrafish and Enhances Fgf-Dependent Regulation of Otic/Epibranchial Cells

Vertebrate sensory organs develop in part from cranial placodes, a series of ectodermal thickenings that coalesce from a common domain of preplacodal ectoderm. Mechanisms coordinating morphogenesis and differentiation of discrete placodes are still poorly understood. We have investigated whether placodal assembly in zebrafish requires Integrin- α5 (itga5), an extracellular matrix receptor initi...

متن کامل

Requirements for endoderm and BMP signaling in sensory neurogenesis in zebrafish.

Cranial sensory neurons largely derive from neurogenic placodes (epibranchial and dorsolateral), which are ectodermal thickenings that form the sensory ganglia associated with cranial nerves, but the molecular mechanisms of placodal development are unclear. Here, we show that the pharyngeal endoderm induces epibranchial neurogenesis in zebrafish, and that BMP signaling plays a crucial role in t...

متن کامل

Establishing neuronal identity in vertebrate neurogenic placodes.

The trigeminal and epibranchial placodes of vertebrate embryos form different types of sensory neurons. The trigeminal placodes form cutaneous sensory neurons that innervate the face and jaws, while the epibranchial placodes (geniculate, petrosal and nodose) form visceral sensory neurons that innervate taste buds and visceral organs. In the chick embryo, the ophthalmic trigeminal (opV) placode ...

متن کامل

The zebrafish forkhead transcription factor Foxi1 specifies epibranchial placode-derived sensory neurons.

Vertebrate epibranchial placodes give rise to visceral sensory neurons that transmit vital information such as heart rate, blood pressure and visceral distension. Despite the pivotal roles they play, the molecular program underlying their development is not well understood. Here we report that the zebrafish mutation no soul, in which epibranchial placodes are defective, disrupts the fork headre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 134 3  شماره 

صفحات  -

تاریخ انتشار 2007